
LOW RISK 

The biased-mixing risk-based model predicts 
that WV infection spreads through the pop- 
utotion from high-risk (red) to low-risk (blue) 
groups. The graph shows number of peo- 
ple infected (vertical scale) versus risk (left to 
right) versus time (back to front). As time in- 
creases, the peaks occur at lower and lower 
values of risk behavior. Also, they increase in 
W h t - W m v - m i n  
low-risk than in h i  groups. 

T 
he threat of AIDS looms omi- 
nously over society. It has 
already devastated the male- 
homosexual population and is 

spreading rapidly among intravenous- 
drug users, through sexual contact to 
their partners and through perinatal con- 
tact to their children. Although many 
promising therapies are on the horizon, 
it appears unlikely that a definitive cure 
or preventive vaccine will ever be de- 
veloped. Also, we don't know where 
this lethal disease will spread next and 
whether it will reach epidemic propor- 
tions among the bulk of our population. 

In an effort to make a quantitative 
assessment of the threat, we adopted 
the philosophy that to predict the future 

we need to understand the past. How 
has the number of AIDS cases grown 
over time? How has the number grown 
among various subgroups of the popu- 
lation? What risk behavior is correlated 
with becoming infected? How does the 
long and variable time between infection 
and appearance of symptoms affect the 
spread of the disease? Can the known 
data be used to make a plausible model 
that agrees with the history of the epi- 
demic to date? 

We began our effort by looking at 
the most reliable data on the course 
of the epidemic-those compiled by 
the Centers for Disease Control (CDC) 
on the total number of AIDS cases in 
the United States as a function of time. 
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Because the United States has a large 
number of AIDS cases and a legal re- 
quirement for reporting them, the CDC 
data are the most statistically significant 
available. 

Analysis of the United States data re- 
vealed two surprising facts. First, the 
number of cases has not grown expo- 
nentially with time, but rather cubically 
with time, or as t 3 .  The difference may 
not appear significant until one realizes 
that previous epidemiological models 
for the spread of diseases predict expo- 
nential growth during the early phases 
of an epidemic, and further, most epi- 
demics so far studied have followed that 
pattern. The second surprise came when 
the data were broken down into sub- 

groups by race and sex or sexual pref- 
erence Again the number of cases in 
each subgroup grew as t 3 ,  and further, 
the cubic growth for each group ap- 
peared to start at nearly the same time. 

The model we present here was de- 
veloped to explain the cubic growth 
of AIDS cases in the United States. 
It builds on the fact that the level of 
"risky" behavior-in particular the sex- 
ual behavior that puts one at risk of 
contracting the AIDS virus-varies 
among the population according to a 
distribution that we speculate may be 
universal for all populations. Thus it 
is called a risk-based model. It also 
depends on another assumption about 
human behavior, namely, that people 

~irorush art by ~ a v i d  Delano 
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with similar risk behavior tend to mix, or interact, primarily among themselves (bi- 
ased mixing) rather than randomly with everyone (homogeneous mixing). The details 
of our risk-based, biased-mixing model form a logical, coherent framework for inter- 
preting the currently available data for the United States, but before we launch into 
details we want to emphasize one critical insight. 

Since the growth in number of AIDS cases is cubic, the doubling time for the 
epidemic (the time for the number of cases to double) is continuously increasing. By 
contrast, if the growth were exponential, the doubling time would remain constant. 
In the framework of standard epidemiological models, the observed lengthening of 
the doubling time for AIDS (and hence its decreasing relative growth rate) might be 
attributed to changes in people's sexual behavior as a result of learning about AIDS. 
That interpretation has been promulgated in the press and has fostered complacency 
about the efficacy of education. Unfortunately, it is false because the long incubation 
time from infection to AIDS means that the effects of learning could not have been 
seen in the data until very recently. 

The people who developed AIDS in the early to mid 1980s were infected with 
the virus that causes AIDS (the human immunodeficiency virus, or HIV) in the late 
1970s and early 1980s, long before learning could have affected a major fraction of 
the male-homosexual population. So behavior changes, if any, could not have been 
nearly enough to give cubic growth of AIDS in the late 1970s and early 1980s. Thus 
the impact of learning cannot explain the observed cubic growth. Another possibil- 
ity to consider is that the combined effect (or convolution) of an exponential growth 
in HIV infections and a highly variable time for conversion from infection to AIDS 
yields a power law. After an initial transient, however, an exponential convoluted 
with any bounded conversion function is still an exponential, not a power law. More- 
over, it is unlikely that the initial transient would have the long, clearly defined cubic 
behavior seen in the data. 

We have looked with considerable diligence for possible causes of cubic growth 
other than behavioral changes due to learning. We have concluded that the risk- 
based, biased-mixing model presented here best fits the observations. Our model is 
an extension of an earlier risk-based model of May and Anderson. They assumed 
homogeneous rather than biased mixing of the susceptible population and so pre- 
dicted an exponential for the early stages of the epidemic. We have drawn much 
from their work, but it was the contradiction between the theoretically nearly in- 
evitable early exponential growth and the observed cubic growth that led us to the 
following biased-mixing model. We also realized that random mixing is sociologi- 
cally unrealistic. 

The general mathematical formalism for our model is presented in "Mathemati- 
cal Formalism for the Risk-Based Model of AIDS." Numerical solutions for different 
assumptions about population mixing and variability of infectiousness are presented 
in "Numerical Results of the Risk-Based Model." Here we will present an intuitive 
and simplified version of the model that emphasizes the main features leading to cu- 
bic growth, the quantitative predictions of the model, and the questions about hu- 
man behavior and HIV transmission that must be answered before we can determine 
whether the patterns we have identified for the past will continue in the future. 

Cubic Growth of AIDS 

The CDC data on cumulative number of AIDS cases in the United States be- 
tween mid 1982 and early 1987 are shown in Fig. 1. Data for times prior to 1982.5 
are not shown because they are statistically unreliable. Data collected since 1987.25 
are also not shown because the surveillance definition of AIDS was changed in 1987. 
The effects of that change on reporting delays and/or on the cumulative number of 
AIDS cases have not been fully determined, but preliminary analysis suggests that 
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GROWTH OF AIDS IN THE U.S. 

Fig. 1. Cumulative number of AIDS cases 
reported to the Centers for Disease Control 
through mid-1987. Data for times before mid- 
1982 are statistically unreliable and therefore 
not shown. More recent data have yet to be 
adjusted for the CDC's change in the deflni- 
tion of AIDS in May 1987. 

Year 

CUBIC GROWTH OF AIDS 

Ill 

Year 

AIDS cases have continued to i n m e  in a regular manner. The best fit to the data 
in Pig. 1 is the cubic function 





AIDS and a risk-based model 

Currently (third quarter of 1988), the CDC reported a cumulative total of 74,904 
AIDS cases under their expanded mid-1987 surveillance definition. Of those about 
14 per cent fell under the new categories added in mid-1987. More difficult to de- 
termine are the effects of delays between diagnosis and reporting to the CDC caused 
by the redefinition. The median reporting delay prior to the redefinition was about 
3 months, and adjustments made for those delays have visible effects 36 months 
into the past on a graph such as the graph shown in Fig. 1. After the redefinition in 
mid-1987, the median reporting delay lengthened to about two years, and the report- 
ing situation is still in transition. Consequently, we must await further data before 
we can model the effects of the transient caused by the redefinition and determine 
whether or not cubic growth has continued to the present. Nevertheless, we can say 
with certainty that the growth in AIDS cases is still polynomial of degree less than 4. 

Expected Exponential Growth 

We start by showing that the initial growth of AIDS (or of any infectious dis- 
ease) would be exponential provided the population was homogeneous and did not 
change its behavior. We assume AIDS is the long-term result of infection by HIV 
and derive an equation for the rate of growth in the number of infected persons. Let 
I be the number of persons infected at time t in a population of size N. Assume that 
a, the rate at which an infected person transmits the AIDS virus to others, does not 
vary with time nor from person to person. Then during the time interval d t  the I in- 
fected persons in the population would infect al persons. But the fraction / /N of 
those ad persons are already infected, and so the number of additional persons in- 
fected during d t  is al - W I N ) ;  that is, 

Equation 3 is called a logistic equation (or an equation of mass action) and is 
the basic equation of epidemiology. During the initial phases of the epidemic, 1 - $ 
is approximately 1, and we can approximate Eq. 3 by 

dI/dt = d. 

Equation 4 has the exponential solution 

where Il is the number infected at t = 0. 
Exponential growth is characteristic of the initial phase of many epidemics and 

is a solution of many current AIDS models. Note that exponential growth implies a 
constant relative growth rate: 

d l  /fit 
relative growth rate = - 

I 
= a. 

The number infected will continue to grow exponentially until the fraction in- 
fected is no longer small compared to unity. The population is then said to be ap- 
proaching saturation, and the relative growth rate decreases. However, we have ob- 
served that even the first few thousand AIDS cases show cubic, not exponential, 
growth, so saturation of the population cannot be the explanation for the decrease 
in the relative growth rate. 
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What Makes a Power Law? Suppose now that the relative growth rate a is not 
constant in time but instead decreases inversely with time: 

where m is a constant. Then Eq. 4 becomes 

d l  I - = m-. 
dt  t 

Equation 8 has a power-law solution, namely, 

I = I1trn; 

that is, the number infected grows as the mth power of time. Moreover, since the 
doubling time td is inversely proportional to the relative growth rate m / t ,  td increases 
proportionally to t .  In particular, td = ( tfl - 1)t. The growth of AIDS is cubic, 
so m = 3 and td = (B - l)t  Ã 0.26t. The observed doubling time for the AIDS 
epidemic has increased linearly from less than 0.5 year to the current value of more 
than 2 years. That change in doubling time and relative growth rate (by more than a 
factor of 4) is dramatically different from the constant doubling time characteristic of 
exponential growth. 

A Risk-Based Model 

Any model for the spread of an infectious disease must take into account the 
mechanism of its transmission, the pattern of mixing among the population, and the 
infectiousness, or probability of transmission per contact. The primary mechanisms 
for transmitting the AIDS virus are sexual contact and sharing of intravenous needles 
among drug users. Since little is known about needle-sharing habits, we concentrate 
on transmission through sexual contact Here we build on data from the homosexual 
and heterosexual community. The relative growth rate of infection a can be approxi- 
mated as the product of three factors: the infectiousness i , or probability of infection 
per sexual contact with an infected person; the average number of sexual contacts per 
partner c; and the average number of new partners per time interval p. That is, 

Each of the factors in Eq. 10 can be a complicated function. For example, data sug- 
gest that infectiousness i is, on average, between 0.01 and 0.001 and that it varies 
with time since infection and, perhaps, from individual to individual (more about that 
later). The new-partner rate and the average number of contacts per partner certainly 
vary among the population and may depend on age, place of residence, race, personal 
history, and more. The general model presented in "Mathematical Formalism for the 
Risk-Based Model of AIDS" allows for some of these variations, but here we pick 
out the simplest features that lead to cubic growth. 

The first crucial assumption of the risk-based model is that the susceptible pop- 
ulation is divided into groups according to level of engaging in behavior that can 
lead to infection. The risk behavior most often correlated with HIV infection in the 
male-homosexual population (as suggested by the early work of the CDC) is frequent 
change of sexual partner, which we quantify as new-partner rate. The other behav- 
ior we consider is frequency of sexual contact (which is equal to the product cp in 
Eq. 10). Both sexual contact and some new partners are necessary to cause the epi- 
demic. 
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If our model is to agree with observation, we must assume that the members of 
each risk group (whether the risk be new-partner rate or sexual-contact frequency) 
interact primarily, but not exclusively, among themselves; in other words, the mixing 
among the population as a whole is biased. We also assume that mixing within each 
risk group is homogeneous and that the relative growth rate a is proportional to the 
risk behavior r ,  

a = a'r, (1 1) 

so that infectiousness i is approximated as a constant. 
Finally we assume (and justify below) that risk behavior is distributed among 

the high-risk groups as r 3 ;  that is, the number of people with risk behavior r,  N(r), 
is given by N ( r )  cx r"3. We believe that these assumptions are sufficient to explain 
the cubic growth of the AIDS epidemic. For the purposes of the model, it makes no 
difference what the risk behavior actually i s ~ o n l y  that such a behavior exists and is 
distributed approximately as r .  However, because of past preconceptions and uni- 
versal interest, we discus8 the available data on the distribution of both new-partner 
rate and sexual-contact frequency. In doing so, we restrict ourselves primarily to 
cases of AIDS among homosexuals, which constitute roughly 65 per cent of the to- 
tal number of cases. Our model can be applied to intravenous-drug users only when 
additional risk-behavior data are available. 

Distribution of Risk Behavior 

New-Partner Rate among Male Homosexuals. The best available data on new 
partner rate p come from studies of homosexual men. Although those data are usu- 
ally presented in summary form (number with 20 to 40 partners in the past year, for 
example) and the sizes of the study samples tend to be small, all of the studies find 
similar distributions. The standard deviation a is always larger than the mean (p), 
sometimes much larger. In other words, the population is not clustered about the 
mean but rather varies widely in its behavior. Moreover, a good fit to the data for 

DISTRIBUTION OF 
NEW-PARTNER RATE 

- - 
Fig. 5. A plot of Ftp), the fraction of a group 
of male homosexuals that had p sexual part- 
ners per year, versus p. Members of the group 
were attendees at London clinics for sexually 
transmitted diseases. (For more details about 
the data, see May and Anderson.) Also shown 
is our inverse-cubic fit to the data, Ftp) = 
w ' / @  + <P))3, where ( p )  is the mean num- 
ber of partners for the whole group. 

Sexual Partners per Year,p 
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DISTRIBUTION OF SEXUAL 
OUTLET FREQUENCY 

Fig. 6. A plot of N(f), the number of males 
among a large study group that had f  sex- 
ual outlets per week, versus f. Also shown 

(solid line) is a distribution that fits the data 
well: N(f) = constant for f  < ( f )  (the mean 
sexual-mitlet frequency) and N(f) oc f 3  for 
f > ( 1) .  The data are those of Kinsey, 
Pomeroy, and Martin for a group of 11,467 - $ 
American males ranging in age from adoles- 

p greater than a few partners per year is the distribution p-'3, where (3 is between 3 
and 4. Figure 5 shows combined data from two studies of homosexual men attending 
London clinics for sexually transmitted diseases. Also shown is our cubic fit to the 
data 2(p)3/((p) + P ) ~ .  The two London studies are biased away from low-activity 
homosexual men; more randomly chosen samples tend to exhibit a p p  distribution 
at large p, but larger fractions of the samples lie at low p. 

Either the published data are too crude (especially since the maximum value for 
the highest bin tends to be omitted) or the sample sizes are too small to distinguish 
between j3 = 3 and (3 = 4. In this paper we have chosen to use ,0 = 3 to be consistent 
with the sexual-outlet frequency data of Kinsey, Pomeroy, and Martin (see below). 
The choice is important because in our model the value of (3 determines the growth 
rate of the epidemic (AIDS cases increase as 113). 

(One way to test the hypothesis that j3 = 3 for male homosexuals is to determine 
how the standard deviation u of the distribution varies with sample size. If p is dis- 
tributed as then cr / (p )  will increase as the sample size increases. By contrast, if 
p is distributed as p 4 ,  then d ( p )  will approach a limiting value of 4 as the sample 
size increases. Unfortunately, the data available are insufficient for us to apply this 
test.) 

Sexual-Contact Frequency among Males. We now turn to the distribution of 
sexual-contact frequency. For that information we must rely on the data published 
in 1948 by Kinsey, Pomeroy, and Martin on sexual-outlet frequency among 11,467 

cence to thirty years. 

Sexual Outlets per Week, f 

Las Alarms Science Fall 1989 



AIDS and a risk-based model 

American males ranging in age from adolescence to thirty years (Fig. 6). (The sexual 
outlets considered by Kinsey et al. include activities, such as masturbation, that are 
of little relevance to the spread of HIV infection. However, data more appropriate to 
our needs are not available.) We found that the Kinsey data could be well fit with a 
distribution similar to die distribution of new-partner rate among homosexual men. 
For values of sexual-outlet frequency f above the mean, the number of males at each 
f value, N ff), is proportional to /"3. The entire distribution is given by 

where $ATo is the sample size and ( f) is the mean value off. 
The Kinsey data showed that sexual preference is independent of sexual-outlet 

frequency. That fact supports applying inverse cubic distributions to distinct sexual- 
preference groups, for example, to male homosexuals. 

One may speculate that an inverse-cubic distribution of sexual-outlet frequency, 
N cc f --, is a Darwinian barrier in behavior space produced by competition for a 
finite resource. If so, the distribution is not determined by a particular set of envi- 
ronmental or social influences but rather may be hard-wired into our genetic make- 
up. In any case, we find that both the distribution of sexual-outlet frequency among 
American males and the distribution of new-partner rate among a limited population 
of British homosexuals are described by inverse cubics. (That result suggests that an 
inverse cubic distribution of risk may also describe the heterosexual population.) 

Sexual-Contact Frequency versus New-Partner Rate-Which Determines the 
Growth of AIDS? It has been argued that the high new-partner rate among homo- 
sexuals has been the primary risk factor governing the growth of AIDS. Here we 
point out that if infectiousness is low, i < 1, then sexual-contact frequency rather 
than new-partner rate is the determining risk factor, provided the new-partner rate 
is greater than zero. First we note that an infected individual must infect on the av- 
erage just one previously uninfected individual within the doubling time to produce 
a doubling of the number of cases. Since the doubling time of the infection has al- 
ways been long compared to the new-partner exchange time (the current doubling 
time of the infection is more than 2 years), it is difficult to see how new-partner rate 
per se can be the primary risk factor. More partners and fewer sexual contacts per 
partner within the doubling time should transfer infection at the same rate as fewer 
(but some) new partners and more sexual contacts per partner. The most likely case 
is that new-partner rate and sexual-contact frequency are strongly correlated, but the 
available data are inadequate to confirm that hypothesis. 

The observed correlation between high new-partner rate and infection could also 
be explained by the existence of a short period (several days to a week) of very high 
infectiousness (Ã 1) soon after initial infection followed by a long period (about 2 
years) of low infectiousness. During a highly infectious period of such short dura- 
tion, a victim of transfusion-related AIDS is not likely to infect his or her partner, 
but a homosexual with a high new-partner rate is. Thus a short spike of very high 
infectiousness is consistent with the high initial growth rate of AIDS (a doubling 
time of less than 6 months) observed among high-risk homosexuals and intravenous- 
drug users and with the long time (an average of more than 3 years) required for 
transfusion-infected people to infect their spouses. 

Later we will discuss the role that a variability in infectiousness from person 
to person might play in the question of whether new-partner rate or sexual-contact 
frequency governs the growth rate of the epidemic. In any case, whichever is the 
causative risk, both can be described by an inverse cubic distribution, provided we 
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SATURATION WAVE PRODUCED 
BY BIASED MIXING 

assume infectiousness is not correlated with risk behavior. Thus we assume the fol- 
lowing distribution of risk behavior: 

No rV3 for r >. 1, 

where r is normalized so that a value of 1 is assigned to the mean value of r and 
1% is the size of the population. 

The Saturation Wave 

We are now in a position to describe how the infection travels through the pop- 
ulation. We start with our assumption of biased mixing, namely, that the population 
is divided into groups of individuals with similar risk behavior and that the members 
of each group interact primarily among themselves (intragroup preference). Since the 
relative growth rate of the infection is proportional to the risk behavior r ,  the time 
for the epidemic to approach saturation within each group will be proportional to 
r l .  Also, higher-risk groups have fewer members than lower-risk groups, so higher- 
risk groups saturate much faster than lower-risk groups. Thus, after a member of the 
highest risk group is infected, that group quickly saturates, then the next lower group 

Fig. 7a. When the mixing among a population 

is biased (that is, when individuals with siml- 
120,000 

w- 
lar rlsk behavior (here new-partner rate) inter- 2r 

*- 
act primarily among themselves), our model 0) 
predicts the distributions by rlsk behavior of 5 90,000 

the number infected shown on the right. The _Â 
distributions were calculated for various times 

0) 

t after an individual with very high risk be- 

havior became Infected. Note that the num- 5 60.000 

ber infected approaches saturation first In the 5 z 
highest-risk group and then, as time passes, 

in successively lower and lower risk groups. 

We describe that situation by saying that a 

wave of saturation travels from high- to low- 

risk groups. Also shown (dashed line) is the 

initial distribution by risk N(r) of the popula- 

tion, which Is assumed to be an inverse cubic 

distribution. 

25 50 75 100 

Sexual Partners per Year, r 

saturates, and so on. We say that a "saturation" wave of infection travels from high- 
to low-risk groups. 

Figure 7a shows "snapshots" of the saturation wave of infection at successive 
times, calculated numerically from our general model. Note that the calculation sep- 
arates those who progress to AIDS and death from those who are infected but do 
not yet have AIDS. Consequently, the plots of number infected versus risk value in 
Fig. 7a are always below the dotted curve representing the original distribution of 
risk among the population. 

As time progresses, the wavefront (the low-risk end of each curve) moves from 
right to left, that is, from higher to lower risk values. At any given time all groups 
with risk values to the right of the wavefront are saturated, and all groups with risk 
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values to the left of the front have just a few infected members. It is primarily within 
the group composing the wavefront that the multiplication is taking place, and there- 
fore the doubling time of the epidemic at any given time is primarily the doubling 
time of that group. Since within that active group the mixing is homogeneous, the 
number of infected within the group is growing exponentially, and, on average, each 
infected individual infects only one person within the group's doubling time. 

The general model used to calculate the wave in Fig. 7a allows a small amount 
of mixing between groups. In addition, we allow for the possibility that some indi- 
viduals were "seeded," or infected, before the start of the saturation wave. There- 
fore, the numbers of infected in all groups with risk values to the left of the wave- 
front are also growing exponentially, but at a relatively slow rate, and all groups with 
higher risk values are saturated, exhibiting no further growth in numbers of infected. 
Only the total number of infected individuals (the sum of the infected in all groups) 
is growing as a power law. 

Fig. 7b shows what happens when we assume homogeneous rather than bi- 
ased mixing. Note that the saturation wave moving from high- to low-risk groups 
disappears. Instead, the number infected in the average-risk group is always larger 
than the number infected in high-risk groups. Thus homogeneous mixing contradicts 
the finding of the CDC that most early victims of AIDS were high-risk individuals. 
Moreover, homogeneous mixing yields exponential rather than power-law growth. 

50 

Sexual partners per year, r 

Calculation of the Saturation Wave. We will now make the above qualitative 
description of the saturation wave into a quantitative model. For simplicity we ignore 
intergroup mixing and calculate the wave of infection as if each risk group grows 
independently to saturation. However, such a simplistic calculation yields essentially 
the same results as the more complete model that includes a small amount of mixing 
between groups (see "Numerical Results of the Risk-Based Model of AIDS"). 

Once the saturation wave starts, the total number of infected I at any given time 
is roughly the sum of all individuals from the highest-risk individual down to in- 
dividuals with risk behavior r*. the value of r at the front of the saturation wave. 
Thus the number of infected is equal to the integral of all individuals with r ;> r*: 

NO SATURATION WAVE 
WITH HOMOGENEOUS MIXING 

Fig. 7b. When the mixing among a population 

is homogeneous rather than biased, the satu- 

ration wave in Fig. 7a disappears. Instead the 

maxima in the distributions of number infected 

always occur in low-risk groups, even early in 

the epidemic. Such a situation is contrary to 

the findings of the Centers for Disease Control. 
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where r* is the risk behavior of the lowest risk group in which most members are 
infected and N ( r )  is the number of individuals with risk behavior r ,  as defined in 
Eq. 13. 

We will now convert Eq. 14 into an equation for the number of infected as a 
function of time. We do this by calculating the time required to saturate the group 
of N(r*) individuals at the front of the wave. We assume all risk groups are seeded 
before the start of the saturation wave at t* = 0. Within each risk group the mixing is 
homogeneous, so the number infected with risk behavior r* grows exponentially, or 
as I(0, r.)earnt*, where I(0, r,) is the number infected with risk behavior r* at t. = 
0. Although the relative growth rate decreases as the group approaches saturation, 
we neglect this slowing down and say that exponential growth continues until the 
number infected is approximately equal to the total number in the group. (We also 
ignore the slow depletion of number infected by death.) Thus 

Then t* is the time to saturate the group with risk behavior r*. Solving Eq. 15 for t* 
gives 

To the accuracy of this model, we will consider the fraction of each group ini- 
tially infected, N (r*)/Z (0, r*), to be slowly varying. Then Eq. 16 says that the time 
t* to saturate a group with risk r* is proportional to l / r Ã ˆ  

We can now express Eq. 14 in terms of t* by replacing r* with a constant times 
1/t*. Thus we determine that the dominant time-dependent behavior of the number 
infected is 

1 (t*) 1lt2, 

where the value of Il is not yet determined. We have assumed that some individu- 
als were seeded, or infected, before a member of the highest-risk group started the 
saturation wave, so we add an unknown constant I. to obtain 

Although Eq. 17 cannot be valid at t .  = 0 (it implies that = 0 at t* = 0, 
which does not make sense), we will not attempt to refine it but instead lump all the 
uncertainties about the very early growth in the constant Io. Thus we say that after 
the start of the saturation wave at tin = 0, the number infected grows as the square of 
time. Since in our model the quadratic growth term zit: will be associated with the 
cubic growth of AIDS, the unknown number of additional infected persons I. will be 
associated with deviations from purely cubic growth of AIDS before 1982.5. 

The Progression to AIDS from Infection. Given the number infected as a func- 
tion of time, we now need to estimate the resulting growth in the number of AIDS 
cases. The most extensive data on the conversion from HTV infection to AIDS have 
their origin in a study by the San Francisco Department of Health on the spread of 
hepatitis B among a group of homosexual men. That study took place between 1978 
and 1982 and was extended in 1984 to track HIV infection. A subset of the original 
group continues to be monitored for clinical evidence of AIDS. The blood samples 
from that study have been an invaluable source for determining the time lapse be- 
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PROBABILITY OF 
DEVELOPING AIDS 

Fig. 8. The cumulative probability of develop- 

ing AIDS at time r after Infection C(T) versus 

r. The time of Infection Is assumed to be the 

time at which antibodies to HIV are first de- 

tected in the blood. The data were supplied by 

the San Francisco Department of Health. C(r) 

is near zero for the first two years after infec- 

tion and then increases appoximately linearly 

at a rate of 0.06 per year. Linear extrapola- 

tion of the data at that constant rate (dashed 

line) Indicates that C(r) = 0.5 at 10 years after 

infection and C(r) 1 at 18 years after Infec- 

tion. Recent data extending to 10 years after 

infection agree with that extrapolation. 

Time since infection, T (years) 

tween infection with HTV and the onset of AIDS. 
Let C (r) be the cumulative probability of conversion to AIDS at r years after 

infection. Figure 8 is a graph of C(r) versus r derived from the San Francisco study 
for r < 8 years. For the first two years after infection, C(r) is nearly zero. Then it 
increases almost linearly at a rate of 0.06 per year. Newly gathered data extend the 
steady rise to 10 years after infection. 

The apparently inexorable increase in C (r) is consistent with the steady decline, 
with time since infection, in the number of T4 lymphocytes in the blood of infected 
persons. Those so-called T4 helper cells are central players in the functioning of the 
immune system, and their demise results in a progressively decreasing ability of the 
immune system to destroy invading pathogens. Moreover, the rate of T4 cell destruc- 
tion found in an infected person is correlated with the time required for that person 
to convert to AIDS. These facts suggest that HIV infection always proceeds to AIDS, 
as does a study by Bordt et al. of infected individuals in Frankfurt, East Germany. 
More than 90 per cent of that study group progressed from one stage of immune de- 
struction to the next. The Frankfurt data indicate that at least 90 per cent of those 
infected will develop AIDS. Thus, even though the San Francisco study covers only 
10 years of experience, we argue that a reasonable extrapolation of the data is to as- 
sume a constant rate of change in cumulative conversion probability of 0.06 per year 
starting 2 years after infection. In other words, we assume that 

0 f o r O < r < 2  
0.06 peryearfor2<r  < 18 

d r  
0 for r > 18. 

Equation 18 implies that the cumulative probability of converting to AIDS is 50 per 
cent at 10 years after infection and 100 per cent at 18 years after infection. 

Because conversion to AIDS has a nonzero probability of happening at any time 
between 2 to 18 years after infection, the growth rate in the number of AIDS cases, 
dA(t)/dt, at any given t is the sum over past times r of the product of the growth 
rate of newly infected at t - r years, dI(t - r)/dt, and the differential probability 
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of conversion to AIDS at r years since infection (or at time t), which is dC(T)/dr. 
That complicated sum is written as a convolution integral over past times r :  

Using Eq. 18, we reduce Eq. 19 to 

9 = 0.06 [ - T ) ~ T ,  = O.O6[I (t - 2) - I(t - 18)] for t < 18 years. (20) 
d t d t  

Replacing I (t - 2) with Eq. 17, neglecting I (t - 18) because it is small, and evaluating 
from Eq. 2, we obtain 

3 ~ ~ f ~  = 0.06[Ii(t. - 2)2 +Io] for t > 1.3 years. 

Thus we see that if 

and if I. is small compared to (1.3)~/! Ã 15,000, then our model fits very closely the 
AIDS case data in Eqs. 1 and 2. The time shift of 2 years reflects our approximation 
that AIDS does not develop during the first two years following infection. 

Equation 17 for the number of infected becomes 

I (t) = 8700(t + 2)2 + Io, 

where t is the time since 1981.2. This equation will be valid from the start of the 
saturation wave, which occurs before t = 1.3 - 2 years = -0.7 years (1980.5). Hence 
we estimate that in 1988.2, or t = 7 years, the number of infected persons that will 
eventually be reported as CDC-defined AIDS cases (using the pre-1987.5 definition) 
was 

To summarize, our biased-mixing, risk-based model shows a cubic growth of 
AIDS independent of learning and predicts that the infected population initially grew 
as the square of time. Both the number infected and the number of AIDS cases have 
doubling times that increase linearly with time. We have associated the cubic growth 
in AIDS cases with a quadratic growth in infections, which is produced by a satura- 
tion wave moving from high- to low-risk groups. We have not discussed what hap- 
pens prior to the start of the saturation wave, since that is more speculative. How- 
ever, in "The Seeding Wave" we present a plausible scenario for the initial spreading 
of infection. 

Consequences of the Model 

We use the simple model described above to answer a number of questions. 
These questions are also relevant to our general model and to other more complex 
models still to be developed. 

Present Number Infected. The estimate of about 700,000 infected in 1988.2 is 
significantly less than the estimate of 1.5 million made several years ago but agrees 
more closely with the CDC estimates of 1 to 1.5 million. While the earlier num- 
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ber was probably an overestimate, the estimate obtained from Eq. 24 was not cor- 
rected for cases not reported, which amount to about 10 per cent of the total, and 
for cases falling outside the pre-1987 CDC definition, which amount to about 20 per 
cent of the total. The estimate of 700,000 must therefore be multiplied by a factor 
of 1/(0.9 x 0.8) = 1.4. Thus our model predicts that approximately 1 million in- 
dividuals in the United States were infected with HTV by 1988.2. This prediction 
is based on the assumption that behavioral changes due to learning did not greatly 
reduce the growth of infection. If learning has been effective, the number infected 
could be less. More likely, however, is that infectiousness depends on the stage of 
the disease, which, in turn, implies a greater number infected (see below). 

Average Time Since Infection. To determine whether behavioral changes could 
have affected the growth of AIDS, we must first determine how long ago, on aver- 
age, those persons now developing AIDS were infected and then question whether 
learning was a significant factor at that time. The mean time since infection t of the 
AIDS cases at time t is given by 

For 1988.2, t = 7 years and t w 4.3 years. That is, those persons developing AIDS 
in 1988.2 became infected, on average, in 1983.9. One might expect the mean time 
since infection to be closer to 10 years, the time when the cumulative probability 
for conversion to AIDS C(T) equals 0.5. The mean time is much shorter than 10 
years because the fast growth rate of the infected population relative to the slow rate 
of conversion to AIDS biases the time since infection of the AIDS cases in 1988.2 
closer to the time when most were infected. 

Learning and Decreasing Growth Rate. We emphasize that 1983.9 is just about 
when learning started on a large scale, that is, when the bath houses in San Francisco 
were closed and safer sex practices began to be accepted. Therefore, we may ex- 
pect that a decrease in the growth of AIDS among homosexual men below the cubic 
growth has already started. The change in the definition of AIDS makes that diffi- 
cult to see in the data. Our estimate of the number infected in 1988.2 is based on 
extrapolating the observed initial cubic growth of AIDS cases into the future, so the 
actual number infected in 1988.2 may have been considerably less than a million due 
to learning. In any case the decreasing relative growth rate observed until early 1988 
cannot be ascribed to learning. 

Risk Behavior As a Function of Time. Our model suggests that individuals with 
the highest risk behavior arc infected first and that, as time goes on, individuals with 
lower risk behavior become infected. We can quantify that change over time pro- 
vided we have estimates of the population size and the present number infected. 

We consider one sector of the population, namely, the 40 million males between 
the ages of 20 and 40 residing in principal American cities, and limit the group to 
those who actively exhibit homosexual behavior. If the Kinsey estimate for the per- 
centage still holds, 10 per cent of the 40 million males, or 4 million, arc homosex- 
ual. Equation 13 tells us that the size of the population is lM), so for the population 
being considered here, No = 2.7 million. From Fig. 3 we learn that 65 per cent of 
the AIDS victims are homosexuals so we can equate I from Eq. 14 to 0.651 from 
Eq. 24. Neglecting I. we have 

Lo$ Alamos Science Fall 1989 



AIDS and a risk-based model 

Substituting the value of 2.7 million for No and solving Eq. 27 for r*, we find that 
the risk behavior of the male-homosexual group being infected at time t varies in- 
versely with time: 

Recall that r and r* were normalized so that they are multiples of the average risk 
behavior and t is the time since 198 1.2. 

Thus, our model suggests, for example, that most homosexual victims of AIDS 
in 1988.2 were infected 4.3 years earlier when t = 2.7 years, that 200,000 were in- 
fected at that time, and that their risk behavior then was about 3 times the average 
behavior. More generally the model predicts that the risk behavior of those being 
infected is a continuously decreasing function of time and that the earliest infected, 
who in general were the earliest victims of AIDS, were those with the highest risk 
behavior. That last point coincides with the original findings of the CDC and others. 
In contrast, models based on homogeneous mixing (recall Pig. 7b) do not predict this 
time-dependent behavior, since at any time most of those being infected are mem- 
bers of the average- and not the higher-risk groups. The high average risk behavior 
at time of infection characteristic of the early cases of AIDS is a strong argument for 
the importance of including behavior in any model of the AIDS epidemic. 

Mean Probability of Infection. We can combine results for the risk behavior as 
a function of time and the growth of the number infected as a function of time to 
estimate ?, the mean infectiousness, or mean probability of transferring infection per 
sexual contact. For example, let's consider those developing AIDS in 1988.2, who 
had, on average, a new-partner rate of approximately 3 times the mean. 

Now suppose sexual-contact frequency is correlated with new-partner rate, that 
is, suppose a new-partner rate of 3 times the mean implies a sexual-contact frequency 
of 3 times the mean. Three times the mean sexual outlet frequency f is 450 sexual 
outlets per year (see Fig. 6), the major fraction of which can, according to Kinsey et 
al., be considered possible infectious contacts. Neglecting I. in Eq. 24, the relative 
growth rate of the infection a is given by: 

Thus at t = 2.7 years, a = 0.43 per year. Because the growth is primarily within 
the risk group at the front of the saturation wave, and the growth within that group 
is exponential, the doubling time is given by td = (ln2/a) = 1.6 years. On the 
average, each infected member of the group infects only one new partner per dou- 
bling time. Thus the average infected person has f tar = (450)(1.6) = 720 sexual 
contacts and infects one previously uninfected person. In other words, 720i = 1 and 
the mean infectiousness is approximately 0.0014. If the sexual-contact frequency is 
uncomlated with new-partner rate, then we assume the sexual-contact frequency is 
the mew value, or 150 sexual outlets per year, and the mean infectiousness must be 
three times larger or about 0.004. These estimates are on the low end of the esti- 
mates of 0.003 to 0.1 made by Grant, Wiley, and Winkelstein. Also, the large uncer- 
tainties in our estimates are proportional to the uncertainties in d l  /dt in 1983.9 and 
the uncertainties in f .  

Time-Dependent Infectivity. Our estimates for the mean infectiousness (or in- 
fectivity) say nothing about the extreme variability observed from one individual 
to another. In an extraordinary example, four out of eight Australian women were 
infected with HTV from one donor sample of cryo-preserved semen split ten ways. 
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By contrast, in New York ninety artificial inseminations with infected semen gave 
rise to no infections. Is the variability due to episodic infectivity in individuals or to 
different strains of virus? If the Australian example were due to a particularly viru- 
lent strain of virus, several hundred times more infectious than the average, then that 
strain would have rapidly eclipsed all others and the growth of infection would have 
been many times faster since the Australian incident in 1982. Since that clearly has 
not happened, we must consider other possible causes of the large variability in in- 
fectivity: (1) a few individuals may be highly infectious for a period longer than the 
doubling time; (2) all individuals may be highly infectious for very short episodes of 
time; (3) highly infectious mutations may quickly mutate to less infectious ones; or 
(4) some individuals may be more infectious than others. Dr. G. J. Stewart has sug- 
gested that his Australian donor was in the active pre-mononucleosis-like phase of 
infection, which occurs before the debilitating lymphoma characteristic of pre-AIDS 
patients, and was therefore highly infectious. Stewart also cites three instances of in- 
fected women who have not yet (in 6 years) infected their unprotected male partners. 
On the other hand the very rapid spread of infection in the Kagera region of Tanzania 
(from only a few seropositive persons in 1984 to 43 per cent of urban adults in 1988) 
may indicate that a more virulent strain has emerged. 

Our model tacitly assumed a constant infectivity per unit time so that the rel- 
ative growth rate a was proportional to risk behavior. However data from Walter 
Reed Army Medical Center and other institutions suggest that the amount of virus in 
the blood, and therefore the infectiousness, follows the curve shown in Fig. 9. Fur- 
ther studies are desperately needed to pin down the course of AIDS within individ- 
uals and the resulting infectivity as a function of time, but for the moment the data 
shown in Fig. 9 are the best estimate we have. Those data indicate that for a brief 
period following infection, people are highly infectious, then for several years the im- 
mune response is able to halt viral replication, thereby reducing infectiousness to a 
very low level, and finally, as the immune system deteriorates and the T4 cell count 
declines, infectiousness rises steadily. If this pattern is correct, how does it alter the 
predictions of our risk-based model? 

We mentioned earlier that a short period (several days to several weeks) of high 
infectiousness (greater than 0.5) immediately after infection could have driven the 
early phase of the epidemic, when new-partner rates were greater than one new part- 

4 5 6 7 
Time since Infection (years) 

1 HIV REPLICATION 
AND INFECTIVITY 

Fig. 9. Dependence of infectivity on time since 

infection most likely follows the red curve, 

which describes the amount of HIV in the body. 

Initially the virus replicates rapidly, but then 

the immune system mounts its defense and 

viral replication is stopped. At about 2 years 

after infection, the immune system begins to 

break down and viral replication resumes. The 

black curve depicts the effectiveness of the 

Immune response to HIV. (The figure was 

adapted, with permission of Scientific Arneri- 

can, Inc., from one appearing in the article ''HIV 

infection: The clinical picture" by Robert R. 

Redfleld and Donald S. Burke. Scientific Amer- 

ican, October 1988.) 
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ncr per week. A spike of high infectiousness of that duration is consistent with the 
observed cubic growth in the high-risk population provided it is followed by a pe- 
riod of low infectiousness lasting roughly several years. Further, if infectivity is cor- 
related with decreasing T4 cell count and therefore begins rising a few years after 
initial infection, our model predicts a growth in AIDS cases proportional to a power 
of time greater than 3. Thus we expect a transition in the growth pattern of the epi- 
demic as the saturation wave moves from groups with high new-partner rates to those 
with lower ones. This change would reflect the fact that among the high-risk popu- 
lation, the disease spreads most during the short, initial infectious period, whereas, 
among the low-risk population, the disease spreads most during the five to ten years 
of increasing infectivity in the later stages of disease. Since the heterosexual popu- 
lation is characterized by relatively low new-partner rates, the latter mode of growth 
will probably dominate in that group. (The effects of time-dependent infectivity for 
the more complete model are presented in "Numerical Results of the Risk-Based 
Model .") 

Do Super Spreaders Exist? We have already pointed out that the low average in- 
fectiousness implies that sexual-contact frequency rather than new-partner rate deter- 
mines the growth rate of the epidemic. However, the new-partner rate within a group 
can be the dominating risk factor if a small percentage of individuals within the 
group are highly infectious. If such individuals have more new partners but main- 
tain the same sexual-contact frequency, they will infect more individuals. Since super 
spreaders infect almost every one of their partners, the fraction of such highly infec- 
tious individuals must be small to maintain the observed growth rate. The singular 
Australian case supports that possibility. Therefore, an understanding of the biologi- 
cal mechanism of high infectivity and means for identifying highly infectious individ- 
uals become important to controlling the epidemic. 

High-Risk Heterosexual Groups. If a self-sustaining epidemic exists among het- 
erosexuals, then our model suggests that it would first occur among nonrnonogamous 
heterosexuals whose sexual-contact frequency and/or new-partner rate were several 
times the mean of that group or higher. At this time, a firm determination can be 
made only by choosing a large enough sample of those high-risk individuals and de- 
termining that more of them are infected than can by explained by unwitting contacts 
with homosexuals and intravenous-drug users. The experience of interviewers has 
shown that many people who initially claim only heterosexual risk may not be telling 
the truth. This creates a bias among researchers that anyone denying other risks is 
either lying or mistaken (for example, female contacts of intravenous-drug users may 
be ignorant of their partner's drug habit). 

Masters, Johnson, and Kolodny have made an attempt to choose a high-risk, 
purely heterosexual sample by selecting heterosexuals who had more than 5 new 
partners per year for 5 years running. (They estimate that less than 5 per cent of the 
nonmonogamous, sexually active heterosexual population satisfy that criterion.) They 
found that 6 per cent of that group was infected. Their study has been severely crit- 
icized on methodological grounds. Although we are not in a position to defend the 
details of the study, we do believe that their philosophy was correct: the only way to 
make an early estimate of the spread of AIDS among heterosexuals is to look at the 
high-risk end of that population. Without such studies the disease may spread silently 
as behavior goes unchanged among a population that believes it is not at risk. 

Conclusions 

We have constructed a risk-based, biased-mixing model that reproduces the ob- 
served cubic growth of AIDS when: the risk behavior, quantified as I-, is distributed 
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among the population as r-3; either new-partner rate or sexual-contact frequency 
dominates the risk behavior or both are positively correlated; and the cumulative 
probability of conversion to AIDS increases at an approximately constant rate. The 
implications predicted by or consistent with the model are many. In the hope that 
those implications will inspire further research and promote greater awareness of the 
threat of AIDS, we end by listing them. 

0 The total number of persons infected with HIV in 1988 was roughly one mil- 
lion. 

0 The mean time between infection and onset of AIDS is an increasing function 
of time. 

0 The decreasing relative growth rate of AIDS cases observed through 1988 was 
not due to changes in behavior. 

0 The mean risk behavior of AIDS victims at time of infection is a decreasing 
function of time. 

0 The mean probability of infection per sexual contact may be as small as 0.004 
to 0.001. 

A slow increase in infectivity during the progression from infection to AIDS 
could change the growth of AIDS from the cubic growth rate now observed to some- 
thing faster, and behavior modification could change it to something lower. 

0 New-partner rate is the dominant risk factor if sexual-contact frequency and 
new-partner rate are strongly correlated or if a few per cent of the population have a 
very high infectiousness; otherwise sexual-contact frequency is the dominant factor. 

0 Most major subpopdations, both demographic and geographic, were infected 
by a few high-risk individuals early in the epidemic, and only small, highly socially 
isolated groups may remain untouched by the epidemic. 

0 One likely path by which the infection initially reached the high-risk groups 
was by an initial seeding of the average-risk population (see "The Seeding Wave"). 
A seeding wave then progressed from low- to high-risk groups before 1979. Sim- 
ulation of such a seeding wave suggests that the first case of infection could have 
occurred in the average population in the late 1960s. Only somewhat less probable is 
occurrence of the first case of AIDS in the higher-risk groups in the late 1970s. 

0 After the highest-risk group is saturated (most of its members are infected), 
a saturation wave of infection proceeds to lower-risk groups, producing the cubic 
growth in AIDS cases. 

0 Growth of AIDS cases within the purely heterosexual, drug-free population 
may also be governed by a power law (most likely cubic). However only by measur- 
ing prevalence in high-risk heterosexual groups adequately isolated from other known 
risk groups can such a determination be made. 

More speculative is the implication that the initial spike of the time-dependent 
infectivity caused the initial rapid growth in the homosexual and intravenous-drug- 
using populations and that the gradual increase in infectivity about two years follow- 
ing infection may be driving a second much slower epidemic (measured in decades) 
among the heterosexual drug-free population. That latter mode of slow spread may 
be the strategy evolved by the vims to survive in equilibrium with its human hosts. 

Our risk-based model is seen by many as controversial. Certainly data on sex- 
ual behavior and mixing patterns that firmly substantiate our assumptions are sadly 
lacking in the literature. Even more unfortunate is the difficulty in collecting data on 
private behavior. The singular dedication of Kinsey must be emulated on a larger de- 
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mographic scale with a societal consensus of the necessity for truthful answers and 
the guarantee of legal protection. Such data may take many years to collect, whereas 
urgency is needed to help us stem the spread of this deadly disease. Thus we have 
used the available data to develop what we feel is a likely and plausible model for 
the growth of the epidemic. Whether exactly right or not, the model raises questions 
that we cannot ignore. It also offers simple quantitative tools to estimate the size of 
the problem and to quantify the effectiveness of strategies aimed at minimizing the 
growing threat. 

Acknowledgments 

We appreciate extensive Interaction with the many people who helped us initiate research on AIDS at Los 
Alamos. Among them are Robert Redfield, Jim Koopman, Klaus Dietz, Roy Anderson, Lisa Sattenspiel, 
Robert May, Meade Morgan, and the staff of the CDC, particularly Harold Jaffe and B. H. Darrow. 

Further Reading 
James M. Hyman and E. Aim Stanley. 1988. Using mathematical models to understand the AIDS epidemic. 
Mathematical Biosciences 90:4 15-473. 

Robert M. May and Roy M. Anderson. 1987. Transmission dynamics of HIV infection. Nature 326137-192. 

R M. Anderson, R. M. May, and A. R. McLean. 1988. Possible demographic consequences of AIDS in 
developing countries. Nature 332:228-234, 

Hebert W. Hethcote and James A. Yorke. 1984. Gonorrhea: Transmission Dynamics and Control. Lecture 
Notes in Biomathematics, Volume 56. Berlin: Springer-Verlag. 

Alfred C. Kinsey, Wardell B. Pomeroy, and Clyde E. Martin. 1948. Sexual Behavior in the Human Male. 
Philadelphia: W. B. Saundm Company. 

H. R. Brodt, E. B. Helm, A. Werner, A. Joetten, L. Bergmanu, A. Kliiver, and W. Stille. 1986. Spontanverlauf 
der LAV/HTLV-III-Infektion. Deutsche Medizinische Wochenschrift 1 1 1: 1 175-1 180. 

Robert M. Grant, James A. Wdey, and Warren Winkelstein. 1987. Infectivity of the human immunodeficiency 
virus: Estimates from a prospective study of homosexual men. The Journal of Infectious Diseases 156: 189- 
193. 

William H. Masters, Virginia E. Johnson, and Robert C. Kolodny. 1988. Crisis: Heterosexual Behavior in 
the Age of AIDS. New York: Grove Press. 

Stirling A. Colgate received his B.S. and Ph.D. de- 
grees in physics from CmeU University in 1948 
and 1952, respectively. He was a staff physicist 
at Lawrence Livenaore Laboratory for twelve years 
aad then pmident of New Mexico Institute of Min- 
ing and Technology for ten years. He remains an 
Adjunct Professor at that institution. h 1976 he 
joined the Theoretical Division at Los Alamos and 
in 1980 became leader of the Theoretical Astro- 
physics Group. In 1981 he became a W o r  Fel- 
low ait the Laboratory. He is a member of the Na- 
tional Academy of Sciences and a board infimher 
at the Santa Fe Institute. His research interests in- 
elude nuclear physics, astrophysics, plasma physics, 
atmospheric physics, inertid fusion, geotectoiuc en- 
gineering, and the epidemiology of AIDS. He has 
been responsible for nuclear weapons testing and 
dejstp, an advisor to the U.S. State Department for 
nuclear testing, and a group leader in magnetic ffi- 
don. His early work on supernova led to the m- 
derstanding of w1y neutrino emission from neutron 
s t a r s ~ s ~  confirmed by the supernova 1 9 8 7 ~  

L o x  Alamos Science Fall 1989 



AIDS and a risk-based model 

James M. Hyman is currently die Administrative 
Manager for die Advanced Computing Facility at 
Los Alamos. Before coming here in 1976, he was 
an instructor and research assistant at the Courant 
Institute of Mathematical Sciences. He received his 
M.S. (1974) and Ph.D. (1976) degrees in mathemat- 
ics from the Courant Institute and two B.S. degrees, 
one in physics and the other in mathematics, both 
with honors, from Tulane University in 1972. His 
research interests include the development and anal- 
ysis of numerical methods and software for the so- 
lution of partial differential equations. One goal of 
this work is to develop expert systems that automat- 
ically generate a computer code approximating the 
solution to mathematical models for, say, oil flow 
in a reservoir, laser fusion, or the weather. Re- 
cently his interest has turned toward mathematical 
models for understanding and predicting the AIDS 
epidemic. 

E. Am Stanley cametoLosAlamosh 1984as 
a postdoctoral fellow and became a staff member 
in the Mathematical Modeling and Analysis giwp 
in the Theoretical Division 1987. She received 
aPh.D.inappliedmathematicsfromfeeCalifornia 
Institute of Technology in 1985 and a 3.S. in en- 
gmeering from the University of Cal- 
ifomilin1979.ForherOs-alldiedevelopedml 
analyzed mathematical models for Case U diffusion, 
(he phenomenon in whfch a glassy polymer absorbs 
a fluid, a sharp front forms between the wet and 
(torregUm~~andthefrontmovesforwardataspeed 
proportionaltolime. AftercorningtoLosAlamos* 
she con~tinwd working on this and other nonlinear 
diffusioo problems. She became involved in the 
AIDS research partly because of previous work on 
amodelofthediffusionoffmtablesacrossEu- 
rope. She enjoys playing the flute, taking modem 
dance classes, bicycling. siding, and other outdoor 
activities. 

CliffordR.Quailsisaprofessorofstatisticsatthe 
Unh&y of New Mexico. He received a BA. 
from California State College in 1961, an M.A. 
from University of California in 1964, and his W. 
fr@m the Udversity of Califda in 1967. His re- 
search interests include applied statistics, biostatis- 
ties, stochastic processes, and time series, and he 
supervises acomputer center for the Department of 
Medicine at {be University. Be has been a visiting 
staffmember at Los Alamos since 1975, working on 
statistical studies of neutral particle beams as well 
as tfas AIDS epidemic. Be is c m t i y  President of 
the Albuquque chapter of the American Statistical 
Associati= 

Los Alarms Science FaU 1989 



AIDS and a risk-based model 

Mathematical Formalism 
by James M. Hyman and E. Ann Stanley 

w e will build up the equations for our risk-based model of AIDS through 
successive modifications of the basic equation of epidemiology, the qua-  
tion of mass action. Its simplest form is given by 

where I ( t )  is the number infected, N is the total population and a is a constant. 
Equation 1 describes the spread of HIV infection by random sexual contact among a 
sexually active population of fixed size N .  As explained in the main text, if a popu- 
lation mixes homogeneously, this equation gives rise to an initial exponential growth 
in the number infected with constant relative growth rate of a. 

As the number infected becomes comparable to the total population the growth 
rate will decrease, so we rewrite Eq. 1 to show that time dependence: 

where S ( t )  = N - I ( t )  is the number of persons susceptible to infection and \(t) = 
d ( t ) / N .  So fax the only independent variable is time t  and \(t) is the time-depend- 
ent relative growth rate of the number infected. 

To describe the AIDS epidemic over long times, we must account for individ- 
uals who eventually develop AIDS and die. Thus the total population will not re- 
main constant but will change with time. We divide the population into three sectors: 
the sexually active, uninfected susceptibles S(t);  those infected with HIV who do 
not have AIDS I ( t ) ;  and people with AIDS A(?). We assume the susceptibles and 
the infected are sexually active (and therefore can infect others) but that those with 
AIDS are not. Thus the sexually active population N(t )  is qua1 to S (t) + I ( / ) .  More- 
over, we assume that people mature, or migrate, into the sexually active suscepti- 
ble population and retire from it at a constant relative rate p, so that in the absence 
of AIDS the susceptible population would remain constant at the value So, that is, 
N ( t )  = S ( t )  = So in the absence of HIV. 

We also introduce the parameter 7, the relative rate at which people who are 
infected develop AIDS, and 6, the relative rate at which people die from AIDS. 

Now we can write down a set of rate equations for changes in S( t ) , I ( t )  and 
A(t) with time. 

The rate of change in the number infected is like Eq. 2 except the right-hand 
side includes negative terms that account for decreases due to conversion to AIDS at 
a rate 71  ( t )  and aging of the infected at a rate PI(?) : 

-- dlw - A(t)S ( t )  - (7 + p)I ( t ) .  
d t  

The number of uninfected susceptibles increases through maturation of "juve- 
niles" at a rate and decreases through aging at a rate pS ( t )  and through infection 
with HIV at a rate X(t)S ( t ) :  

-- ds(r)  - p(So - S ( t ) )  - A(t)S ( t ) .  
d t  (4) 

- 
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. In the simple model just pre- 
be equal in their susceptibility 

where the constant i is the probability of infection per sexual contact, the constant 
of s 1.9 

ear, IS 
population. 

STRUCTURE OF THE RISK-BASED MODEL 

Independent Variables 

\ 

t: Time 

t: Time since infection 

r: Number of partners per year 

I Dependent Variables 

S(t,r): Distribution of susceptibles by 
number of partners per year 

l(t,~,r): Distribution of infecteds by 
number of partners per year 
and time since infection 

A(t,t): Distribution of AIDS cases by 
time since diagnosis 

\ Parameters 
- - - 

S,(r): Distribution of susceptibles in 
the absence of HIV 

X(t,r): Relative rate of at which 
susceptibles with r partners 
per year get infected 

JX Relative rate at which people 
mature into and retire from 
the susceptible population 

y(r): Relative rate of developing AIDS 
at a timer after infection 

8(r): Relative rate of death at a 
timer after diagnosis 

- - 
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Note that this simple model produces exponential growth at the start of the epi- 

demic. All members are equally at risk (homogeneous mixing) and the probability of 
infection per contact i remains constant throughout the years of infection. 

We will now modify the simple model defined by Eqs. 3-6 to account for two 
crucial aspects of the AIDS epidemic. First, since AIDS takes many years to develop 
and the infectivity duringthe period of infection may vary in time, we introduce an 
additional independent variable r ,  the time since infection. Second, since individuals 
who are very active sexually and who change partners frequently have a greater risk 
of becoming infected, we introduce the variable r ,  which quantifies the level of risky 
behavior in the sexually active population. In this model, r  is defined as the number 
of new partners per year. 

Using the two new independent variables r and r ,  we distribute I ( t ) ,  S ( t )  and 
A(t) over risk behavior and/or time since infection. (See the definitions in the block 
diagram.) In addition, the constant So is the integral of an equilibrium distribution 
over risk behavior, So = fom So(r)dr. Note that So(r) corresponds to N ( r )  in the main 
text; also the main text presents evidence that So(r) oc r 3  for large r .  

We can now write down the equations of our risk-based model that correspond 
to Eqs. 3-5. Equation 3 for the infected population is replaced by Eqs. 7a and b. 
Equation 7a specifies that the rate at which people of risk r  are becoming infected 
is \(t, r)S ( t ,  r ) .  Equation 7b says that rate at which the infecteds develop AIDS is 
proportional to the conditional probability ~ ( r ) ,  which is a function of the time since 
infection, and the rate at which they leave the population is proportional to p. 

I(t ,O,r) = A(t,r)S(t,r).  
91 ( t ,  r, r ) Q I  (t,r,r) + = -7 ( r ) I ( t , r , r )  - pI( t , r , r ) .  

9t 9 r  

Equation 8 for the susceptibles has a structure similar to that of Eq. 4 except 
that now the rate of infection per susceptible \(t, r )  depends on the risk behavior r :  

Equation 9a says that the rate at which AIDS cases are being diagnosed at time , 

t  is equal to the rate at which infecteds convert to AIDS, y(r)I (t , r2 r ) ,  integrated 
over all risk behaviors r  and times since infection r .  Equation 9b accounts for loss 
of AIDS cases due to death. 

The major change in this new set of equations is the form we assume for \(t, r ) ,  
the relative rate at which susceptibles with r partners per year get infected. We gen- 
eralize Eq. 6 to include variation in the degree of sexual contact between individuals 
with different risk behaviors as well as variation in infectiousness with time since 
infection. The general form of A(t, r )  is given by 

where c(r ,  s )  is the average number of sexual contacts in a partnership between a 
person with risk r and one with risk s ,  i ( r )  is the infectiousness at r years since in- 

--  
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Numerical Results of the Risk-Based Model 
by James M .  Hyman, E. Ann Stanley, and Stirling A. Colgate 

H ere we will present numerical 
solutions to the full risk-based 
biased-mixing model. These so- 

lutions validate the simplified version 
of the model presented in the main text 
and illustrate how variations in the input 
parameters affect the predicted course of 
the epidemic. The equations and param- 
eters of the model are defined in "Math- 
ematical Formalism for the Risk-Based 
Model of AIDS," hereafter referred to 
as "Math Formalism." The model tracks 
the time evolution of three sectors of 
the population: the sexually active sus- 
ceptible~ S ( t  , r ); the sexually active in- 
fected~ I ( t  , r ,  r); and the people with 
AIDS A(t , r ,  r ). It takes into account 
deaths due to AIDS and the long time 
between HIV infection and conversion 
to AIDS. It also allows us to vary as- 
sumptions about the infectiousness as a 
function of time since infection and the 
mixing between various risk groups in, 
the population. 

First we will assess the validity of 
the predictions in the main text. The 
analytic calculation presented there pre- 
dicted that biased mixing among the 
sexually active population gives rise to 
a saturation wave of infection, which 
yields power-law growth in both the 
number infected and the number of peo- 
ple with AIDS. That calculation was 
based on the following assumptions: the 
initial susceptible population So(r) is 
distributed in risk behavior as r 3  for 
r greater than the mean value of r ;  the 
infectiousness i is constant; the cumula- 
tive probability of conversion to AIDS 
C ( r )  is zero for the first two years af- 
ter infection and then increases linearly 
with r  at a rate such that every infected 
individual develops AIDS by 18 years 
after infection; and finally, the same 
fraction is infected in all risk groups 

before the start of the saturation wave. 
The wave of infection was then calcu- 
lated as if each risk group had a growth 
rate proportional to r and grew to satu- 
ration independently of all other groups. 
That is, we did not account for mix- 
ing between people with different risk 
behavior because the calculation is too 
difficult to perform analytically. More- 
over, AIDS cases and deaths were not 
removed from the infected population. 
The result was that the number infected 
grows as t 2  and the number of people 
with AIDS grows at t3 .  

To check whether mixing among in- 
dividuals with different risk behavior 
alters that result, we solved the full set 
of equations given in "Math Formal- 
ism." We used the same assumptions 
and conditions outlined above except 
that we allowed mixing between people 
with different risk behavior r.  We found 

that when mixing is restricted to people 
whose risk behaviors are within a factor 
of 2 of each other, that is, the mixing 
is biased, a saturation wave of infection 
moves from high- to low-risk groups 
and the number infected grows as t 2 ,  
as predicted by the analytic calculation 
in the main text. Also, when mixing 
is random, or homogeneous, that is, is 
based only on availability, the number 
infected grows exponentially, the rel- 
ative growth rate is constant, and the 
fastest growth occurs in the population 
with the most likely risk. Thus, dou- 
bling times for biased mixing are shorter 
initially and later become longer than 
those for random mixing. 

Now let's consider numerical solu- 
tions to the full model under more gen- 
eral assumptions. We will first com- 
ment on their overall behavior and then 
present specific solutions. The numer- 

-- 

I THE RATE OF INFECTION A(r, t )  

infection per susceptible with risk r, A(r, t )  (see Eqs. 10 and 13 in "Math 
We will describe this function in words: 

Rate of Number of Rate of sexual Infectious- Probability that 
infection - - new partners contact between ness per a person with 
for a per year persons with risk contact risk s is 
susceptible behaviors r and s infected 

contacts in a partnership person with risk behavior 
between persons with risk r and who have risk behavior s 
behaviors r and s 

1 The function pi t ,  r, 8 )  describes the level of mixing between people with risk behav- 1 
1 iors r and s. It is defined in terms of an acceptance function f (r, s) that determines 
ithe range from which partners are chosen. 

- -- 
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BIASED MIXING FOR 
BASELINE SOLUTION 

to 
>Ã̂ - 

Â¥* 

Fig. 2. The numerical solutions presented here 
0.6 

use an inverse quartic function for the accep- 
tance function f(r, s): 

The figure shows f ( r ,  s) versus s for r = 
40, 80, and 150 when e = 0.01. For each value 
of r, f(r, s) determines the fraction of partners 
with risk s chosen by people with risk r. Here 0.2 
f(r, s) specifies that most partners of a person 
with risk r have risk behaviors between ;rand 
r; that is, the mixing is heavily biased toward 
people with similar risk behavior. 

0.0 

TIME-DEPENDENT INFECTIVITY A 

I2 

Fig. 3. The mean infectiousness i ( r)  versus 
time since infection (solid line) used in all but 
the last solution presented here. The func- 

tion i ( r)  is an average over individuals each 

of whom develops AIDS at some time between 
2 and 20 years since infection. The average in- 
fectlousness of each individual over the time 

from infection to AIDS is 0.025. The dotted line 
shows the pattern of infectiousness that we 
postulate for a single individual. In this case 
the individual develops AIDS 8 years after in- 0.02 

fection. The initial peak of infectiousness for 
this individual is always taken to be greater 

than 6 months because our numerical tech- 

AIDS and a risk-based model 
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sectors of the population predicted by the 
line calculation. Despite a stew migration 

of people into the total population, the h 
mean new-partner rate of 24 partners per y 
drives an epidemic that substantially depletes 

tion a@ a large fraction become 
infected and then die of AIDS. The very slow 

are infected. 

SATURATION WAVE IN 
BASELINE SOLUTION 

5. Distributions of the number infected 
over number of new partners per year at times 
F = 5, 10, .... 40 
line calculation. The line shows the 
distribution of the 
sence of HIV. AS 

roups become infected, and the populations 

roupÃ becomes Infected. 
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fectiousness per contact since time from 
infection i(r). 

We present first a "baseline" solution. 
The acceptance function f (r, s) and the 
infectiousness per contact i (r)  for this 
solution are described in Figs. 2 and 3, 
respectively. The acceptance function 
in Fig. 2 is an inverse quartic function 
of r and s, which describes the proba- 
bility that a person with risk behavior r . 
chooses a partner with risk behavior s: 

where e = 0.01 and rm = 10 partners per 
year. The figure shows f (r, s) versus 
s for three different values of r. As r 
increases, the width of the acceptance 
function increases. In rough terms, 
this function describes a biased mix- 
ing pattern in which a person with risk 
r chooses most of his or her partners 
from a group that ranges in risk behav- 
ior from }, r to 2r. 

Figure 3 is a plot of i(r), the mean 
infectiousness per partnership versus 
time since infection. The mean infec- 
tiousness is an average over the infec- 
tiousness of many individuals each of 
whom develops AIDS at different times 
(determined by 7(r)) since the time of 
infection. Figure 3 also shows the in- 
fectiousness curve for an individual who 
develops AIDS 8 years after infection. 
The infectiousness for this individual is 
assumed to have an initial peak, a la- 
tency period of about four years, and 
finally a steady rise. The average infec- 
tiousness for each individual is assumed 
to be 0.025. The initial peak is about 6 
months wide, probably too wide to be 
realistic, but our numerical code does 
not yet have the capability of resolving 
a burst (hat is only a few weeks in du- 
ration. Nevertheless, the wider shape 
that we have used serves the purpose of 
illustrating what the impact of an initial 
peak of infectiousness can be. 

The infected population at t = 0 

Time (years) 

"CUBIC GROWTH" OF 
BASELINE SOLUTION 

Fig. 6. The cube root of the cumulative num- 
ber of AIDS cases as a function of time for the 
baseline solution. Although the curve is not 
perfectly straight, a t3 growth in the cumula- 
tive number of AIDS cases is a good fit to this 
calculation between f = 1 and t = 9 years. 
Thus, despite the many complexities included 
in the numerical model, its solutions behave 
quite similarly to the analytic calculation of the 
main text. Note that the calculated time scales 
are fixed by the average value we assume for 
the product c(r, s) i ( r )  and are therefore highly 
uncertain. 

contains 1000 individuals distributed as 
a narrow Gaussian function of r cen- 
tered at 175 partners per year and dis- 
tributed linearly in r. Although here we 
assume that the epidemic starts among 
(he highest-risk groups, this choice does 
not have a major impact on the numeri- 
cal results. In particular, if the infecteds 
at t = 0 are centered at the mean, the 
epidemic follows a similar course but 
starts about 2 years later. If the infect- 
eds at t = 0 are distributed over all risk 
groups, the saturation wave takes off 
sometime between 0 and 2 years later. 

The input parameters and initial con- 
ditions just described yield our "base- 
line" solution. Figure 4 shows S (t), I (?), 
and A(t) over a 40-year period. During 

that period about half of the population 
dies of AIDS. The number infected I (t) 
and the number of people with AIDS 
at any given time A(t) rise steadily for 
more than 10 years and then decline 
slightly as the epidemic reaches a steady 
state. 

Figure 5 shows plots of the number 
infected versus risk behavior at times 
t = 5, 10, 15, 20 and 25 years. Here 
we see that the infection travels as a 
saturation wave from high- to low-risk 
groups. The wave takes 20 to 25 years 
to reach the lower-risk groups. 

Figure 6 is a plot of the cube root 
of the cumulative number of AIDS 
cases as a function of time. The nearly 
straight line between 1 and 10 years 
shows that the calculation is not in- 
consistent with the observation that the 
number of AIDS cases grows as t3 dur- 
ing the initial stages of the epidemic. 
The main reason that the growth is not 
purely cubic is the deviation of the mi- 
tial profile So(r) from a pure inverse cu- 
bic. However, the profile we chose for 
So@) fits (he available partner-change- 
rate data much better than does Eq. 13 
in (he main text. We have also assumed 
a fairly large infectivity, which speeds 
up the progress of the entire epidemic. 
Consequently, by 10 years from the start 
of the saturation wave, the wave front 
has reached the lowest-risk populations, 
which, in turn, slow down the cubic 
growth. Although the solution just pre- 
sented roughly matches the observed 
cubic growth of AIDS, it does not prove 
that the input parameters are correct 
but rather suggests the basic ingredients 
needed to produce the type of epidemic 
we are experiencing. A slightly differ- 
ent mix of input parameters yields very 
similar growth. 

The assumption of biased mixing is 
the feature that sets this model apart 
from other models. Let's see how the 
epidemic changes when this assumption 
is relaxed. Figure 7 shows three solu- 
tions to the model that differ only in the 
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- i (~ )as inF ig .3  

--- I ( T )  = constant 

THE INFECTIVITY Â 
Fig. 9. The distribution of number Infected i(r) 
as a function of new-partner rate at t 10 
years for the calculations in Fig. 7. This figure 
demonstrates most dramatically the effects of 
varying the mixing patterns. When people 
have a strong bias to mix with others of sim- 
ilar risk, few people of low risk are infected 
in the early stages of the epidemic. In con- 

trast, when partners are chosen purely on the 
basis of availability, people of low risk are in- 
fected early. The fact that early AIDS cases 
and early cases of infection were among peo- 
ple with high new-partner rates is evidence for 
biased mixing in the U.S. population. 

level of mixing among different risk 
&roups. The solid lines show the base- 

line solution in which the mixing is 
strongly biased; that is, f (r, s) is an in- 
verse quartic with e = 0.01 (see Fig. 2). 
The dotted lines show a solution with 
less bias; that is f (r, s) is again an in- 
verse quartic but e = 0.17 so the curves 
off (r , s) versus s for different values 
of r have much wider peaks than those 
in Fig. 2. The dashed lines show a so- 
lution with no bias; that is, f (r, s) = l 
corresponding to random, or homoge- 
neous, mixing. Note that as the mixing 
becomes less biased, the epidemic starts 
off slightly later but then grows faster 
because the doubling time increases at a 
slower rate. 

Figure 8 shows the cumulative num- 
ber of people with AIDS as a function 
of time for the three types of mixing. 
For random mixing, the number of 
people with AIDS grows nearly ex- 
ponentially; that is, the doubling time 
is nearly constant. As the mixing be- 
comes more biased, the number of peo- 
ple with AIDS grows more like a low- 

lorder polynomial. 
It is worth cautioning that the initial 

* - - -  . 
8 , /-\ - - - - - - -  i ( ~  ) has large initial peak 

/ 
/ 

1 /^% 

\ 
\ ---- i ( q  = iJ 

I / \ 

INFECTEDS 

AIDS CASES 

- --- 

10 20 30 

Time (years) 

distribution of infecteds, which is arbi- 
trary, can have a significant impact on 
the early growth of the epidemic, espe- 
cially if the initial growth rate is low. 
For the random-mixing case, growth in 
infections is so low initially that most 
people getting AIDS in the first 10 years 
were infected at t = 0. Consequently, 
since those infected at t = 0 were dis- 
tributed linearly with r ,  the number of 
AIDS cases grows as a polynomial dur- 
ing the first 10 years, and only the num- 
ber infected grows exponentially. After 
10 years both the number infected and 
the number of AIDS cases grow expo- 
nentially. For the cases of more-biased 
mixing, the initial growth in number of 
infecteds is more rapid, so the initial 
distribution I ( 0 ,  r )  affects the solutions 
for a shorter period of time. Since our 
initial conditions are arbitrary, rather 
than based on knowledge of the earliest 
stages of the epidemic, the solution tran- 
sients just described are also arbitrary. 

Figure 9 shows the number infected 
versus risk behavior at t = 10 years 
for each of the three mixing patterns. 
We see that random mixing not only 
produces a faster-growing epidemic but 

also causes the epidemic to reach the 
low-risk groups almost immediately. 
Figures 4a and 4b of the main text also 
illustrate that point. The solution with 
biased mixing shows a saturation wave 
of infection traveling from high-to low- 
risk groups, but the solution with homo- 
geneous mixing shows no such wave. 
Instead, the majority of those infected 
are always in the low-risk groups. Since 
the average partner rates for the earliest 
AIDS cases and infected homosexuals 
were high compared to the mean in the 
general homosexual population, these 
numerical results support the conclusion 
in the main text that biased mixing has 
produced the cubic growth of the AIDS 
epidemic. 

We will now examine the effects of 
varying the function i (r), the infectious- 
ness since time of infection. In the main 
text we used a constant value of i(r), 
but we also discussed the effects of a 
variable infectiousness. Here we display 
four solutions, each of which uses a dif- 
ferent function for i(r) (see Fig. 10). 
In all cases the mean infectiousness of 
an individual over the course of infec- 
tion is 0.025. The solid lines correspond 
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ual of risk group r becomes infected de- 
spite the lower risk per individual. Als~ 
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erage. To help understand this pro 
we simplify by saying that the klh ns 
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Eq. 13) is 
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was infected and, hence, later became 
the likely first case of AIDS? (2) Is 
the predicted risk behavior of the early 
cases of AIDS, inclusive of the seed- 
ing wave, consistent with the high mean 
risk behavior of the early AIDS cases 
observed by the Centers for Disease 
Control (CDC)? (3) What is the proba- 
bility that the whole process of group- 
to-group progression is circumvented 
by one high-risk individual becoming 
infected early in the seeding process? 
(4) Is the seeding process consistent 
with our perception that all major de- 
mographic groups participated in a near 
simultaneous start, that is, synchroniza- 
tion of the saturation wave? 

Infection Time. We would like to as- 
sociate a real time with the time step tk 
of Eq. 4s and then take the sum tk 
as the total, or maximum likely, time of 
the seeding wave. This then becomes 
the maximum time prior to 1979.2 that 
the first person in the United States was 
likely to have been infected. 

In the seeding-wave process, the 
growth rate of any given group is (1 - 
W k ,  where the factor (1 - F )  rec- 
ognizes that out-of-group mixing is not 
balanced by equal and opposite in-group 
mixing. We now use the current growth 
rate of the group at the front of the satu- 
ration wave to calibrate (1 -F)a. In this 
way, we derive a very rough estimate 
for the maximum time of the seeding 
wave. 

Figures 2 and 3 of the main article 
indicate that, at the time 1988.2, the ho- 
mosexual fraction was approximately 
65 per cent of our estimated one mil- 
lion infected, which is 650,000 infected, 
or ith of our estimate of the total nurn- 
ber of active homosexual population 
of 4 million. This estimate places the 
presently infected population partly in 
group 1 with all higher groups near sat- 
uration. The total population already 
infected in the higher risk groups is 
%2, 3- - or roughly 330,000 - (Eq. 2s). Thus, 

3 8 

about the same number must be infected 
in group 1 so that the total is 650,000. 

It has required 9 years for the seeded 
fraction of 81 individuals in group 1 to 
grow to 320,000, which gives a growth 
rate of (1 - F ) a  = i l n v  = 0.92 per 
year or a doubling time of 0.75 years. 
Thus, the apparent growth rate for the 
total epidemic, which must be averaged 
over both group 1 and all higher risk 
groups-groups that, by now, are almost 
saturated, gives a doubling time that 
is roughly twice as large, or 1.5 years. 
This doubling time is to be compared 
to the present doubling time for infec- 
tion predicted by our saturation-wave 
model, which, at t + 2 = 9 years, is 
( @ / d o - '  ln2 = 0.69t/2 = 3 years. 
The three-year doubling time corre- 
sponds to a two-year doubling time 
for AIDS, in agreement with present 
CDC estimates of 1.75 years. Thus, our 
saturation-wave model is consistent with 
the CDC data but inconsistent with the 
simple seeding-wave growth by a factor 
of two. One source of discrepancy is 
our incomplete treatment of the effects 
of out-of-group mixing. We therefore 
estimate that the growth rate in group 1 
is bounded by a doubling time of 0.75 
to 1.5 years. 

In Eq. 2s we have neglected group 0 
(0 < r < 1) with 3.3 million indi- 
viduals. The first individual infected 
is equally likely to be in group 0 or 1 
because the average value of N(r ) r  is 
approximately the same for both groups. 
We neglected group 0 to simplify the 
seeding-wave calculation, but since our 
estimates for the doubling time are too 
short, we must now recognize that the 
initial infected individual most likely 
had a lower mean risk than group 1 and 
that the mean growth rate is between 
the growth rate of two groups. As a 
rough approximation, let us say that 
the mean growth rate is lower by a fac- 
tor of I/&. Then the doubling time 
of the combined group average will be 
0.75& to 1.5& years, or 1.1 to 2.2 

years. This then becomes a rough esti- 
mate of the doubling time of the seeding 
wave. 

First Infection. The date for the begin- 
ning of the saturation wave or power- 
law {t2) growth of infection was 1979.2 
(Eq. 24). But the seeding-wave model 
suggests that the first infection in the 
United States may have occurred ln(($-t 
I ) ~ ) /  In 2 cr 6 doubling times earlier, 
or 7 to 14 years earlier. The date of 
the first infection thus may fall some- 
where between 1972 to 1965, earlier 
than has previously been estimated. 
Thus, the singular case of a teenage boy 
in St. Louis who has now been identi- 
fied as having died of AIDS in 1969 is 
consistent with our seeding-wave pic- 
ture if he was infected up to five years 
before developing AIDS. The existence 
of this case of AIDS in 1969 implies 
a slow growth of the number infected 
before the start of the saturation wave. 

Mean Risk Behavior. We wish to 
confirm that our model of the seeding 
wave, which starts in relatively low-risk 
groups, is consistent with the CDC ob- 
servation that most early cases of AIDS 
were among high-risk individuals. The 
mean risk behavior of those develop- 
ing AIDS can be calculated using a 
convolution integral similar in struc- 
ture to Eq. 26, but one emphasizing risk 
rather than time since infection. How- 
ever, here we are really interested in 
risk behavior versus time and the abso- 
lute number of cases of AIDS, because 
it was the occurrence in 1981 of roughly 
50 AIDS cases in a relatively short pe- 
riod of time (approximately 6 months) 
that caused the recognition of an epi- 
demic. 

We next must define high- and low- 
risk behavior in terms of our seeding- 
wave model. The new-partner rate of 
the homosexual population in London 
SDT clinics (Fig. 5 in the main text) has 
a mean of roughly 24 partners per year. 

7 
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s. that is, &at a given in- 
infects only one other 
of 10 years to AIDS 

in the homosexual pop- 

Synchronization of Risk Popula- 

to the saturation-wave 

in the main text) as well as regional and 
ions (not shown), the cube 
umulative number of cases 

linear fort > 1982 -5. These 
trapolate to zero at approxi- 

m e  time with a maximum 
lav of half a vear. This result means 

her infected within 
The number infecte 
(using Eq. 24) becomes 
or 3000, all within high- 
and with or without the 

the probability is tha 
lected does not have 

risk groups. This depends upon the 
cial isolation, but for a subdivision that 
creates 10 or more categories, no one 
population is likely to 
100 to 150 members in i 
group. Thus, isolation would hav 
to been very strong, such that none were 
infected. The observed synchronization 

started the epidemic. 
In summary, we have 

plausible process by whi 
infection of HIV s 
risk populations of the 
Initially, an average i 
fected from sources unknown, but the 
infection then grew in a until 
the number infected and ility 
of out-of-group mixing caused the infec- 
tion t~ jump to a highfer risk 
this fashion, a seeding wave of infection 
steadily climbed to the highest-risk indi- 
viduals. The rapid growth among these 
highe~t-risk individuals caused all of 
them to be rapidly infected* resulting in 
the start of saturation-wave growth for 
the whole population. The total n m -  
her infected in the initial seeding wave 
is strongly dependent upon the out-of- 
group mixing fraction, but reasonable 
estimates indicate that the number in- 
fected by the seeding wave would be 
small enough, less than several thou- 
sand, to leave the later saturation-wave 
growth intact. The earliest known case 
of AIDS in the U.S. in 1969 is eonsis- 
tent with this picture. rn 
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